O22	$0.114(2)$	$0.6534(18)$	$0.3793(18)$	$0.150 \dagger$
O23	$0.0483(6)$	$0.7425(11)$	$0.3076(8)$	$0.192(6)$
O24	$0.1415(6)$	$0.7435(9)$	$0.2435(8)$	$0.172(5)$

\dagger Fixed $U_{\text {iso }}$.
Table 2. Selected geometric parameters $\left({ }^{\circ},^{\circ}\right)$

$\mathrm{Cu}-\mathrm{N} 7$	2.299 (9)	$\mathrm{Cu}-\mathrm{N} 7^{\prime}$	2.100 (9)
$\mathrm{Cu}-\mathrm{N} 10$	1.975 (9)	$\mathrm{Cu}-\mathrm{N} 10^{\prime}$	1.934 (8)
$\mathrm{Cu}-\mathrm{N} 13$	2.320 (9)	$\mathrm{Cu}-\mathrm{N} 13^{\prime}$	2.103 (8)
N7-Cl	1.394 (9)	$\mathrm{N} 7^{\prime}-\mathrm{Cl}{ }^{\prime}$	1.410 (10)
N7-C8	1.278 (12)	$\mathrm{N} 7^{\prime}-\mathrm{C} 8^{\prime}$	1.277 (12)
NiO-C9	1.365 (12)	$\mathrm{N} 10^{\prime}-\mathrm{C} 9^{\prime}$	1.318 (12)
N10-Cl1	1.343 (11)	$\mathrm{N} 10^{\prime}-\mathrm{Cl1}{ }^{\prime}$	1.355 (12)
N13-Cl2	1.274 (12)	$\mathrm{N} 13^{\prime}-\mathrm{Cl} 2^{\prime}$	1.305 (11)
N13-C14	1.408 (11)	$\mathrm{N} 13^{\prime}-\mathrm{Cl} 4^{\prime}$	1.391 (9)
N7-Cu-Ni0	77.4 (4)	$\mathrm{N} 10-\mathrm{Cu}-\mathrm{N} 13^{\prime}$	97.3 (3)
N7-Cu-N13	149.4 (3)	$\mathrm{N} 13-\mathrm{Cu}-\mathrm{N} 10^{\prime}$	118.5 (4)
N7-Cu-N7 ${ }^{\prime}$	86.5 (3)	$\mathrm{N} 13-\mathrm{Cu}-\mathrm{N} 7^{\prime}$	92.4 (3)
$\mathrm{N} 7-\mathrm{Cu}-\mathrm{N} 10^{\prime}$	91.4 (3)	$\mathrm{N} 13-\mathrm{Cu}-\mathrm{N} 13^{\prime}$	95.8 (3)
N7-Cu-N13'	97.0 (3)	$\mathrm{N} 7^{\prime}-\mathrm{Cu}-\mathrm{N} 10^{\prime}$	79.8 (4)
$\mathrm{N} 10-\mathrm{Cu}-\mathrm{N} 13$	73.4 (4)	$\mathrm{N} 7^{\prime}-\mathrm{Cu}-\mathrm{N} 13^{\prime}$	157.0 (4)
$\mathrm{N} 10-\mathrm{Cu}-\mathrm{N} 7^{\prime}$	105.5 (3)	$\mathrm{N} 10^{\prime}-\mathrm{Cu}-\mathrm{N} 13^{\prime}$	77.4 (4)
$\mathrm{N} 10-\mathrm{Cu}-\mathrm{N} 10^{\prime}$	167.1 (4)		

The high value for the conventional R factor is attributed to poor crystal quality, as indicated by preliminary oscillation and Weissenberg photography. It was particularly noticeable that relatively few reflections appeared at higher angles. Several axial and zero-layer reflections were checked intermittently as a means of detecting possible crystal movement. They gave no sign of crystal decay. Disorder in the perchlorate counteranions was originally modelled by allowing all O atoms to refine with anisotropic displacement parameters, but the extreme thermal motion observed for atoms O 14 and O 22 required each of these atoms to be modelled by two components and O14' and $\mathrm{O} 22^{\prime}$ were introduced into the model to accomplish this. All four disorder components were refined with a fixed $U_{\text {iso }}$ of $0.15 \AA^{2}$.

Data collection: local programs. Cell refinement: local programs. Data reduction: local programs. Program(s) used to solve structure: SHELX76 (Sheldrick, 1976). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1992). Software used to prepare material for publication: SHELXL93 (Sheldrick, 1993).

The authors thank the SERC for support.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1197). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Blake, A. J., Lavery, A. J., Hyde, T. I. \& Schröder, M. (1989). J. Chem. Soc. Dalton Trans. pp. 965-970.

Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
Sheldrick, G. M. (1992). SHELXTL/PC. Version 4.3. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 39-41

cis-Diisothiocyanatobis(1,10-phenanthroline)copper(II), $\left[\mathrm{Cu}(\mathbf{N C S})_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$

O. Jerry Parker, Sheryl L. Aubol and
Gary L. Breneman
Department of Chemistry and Biochemistry (MS-74), Eastern Washington University, Cheney, WA 99004, USA

(Received 26 June 1995; accepled 19 July 1995)

Abstract

The crystal and molecular structure of green cis$\left.\left[\mathrm{Cu}(\mathrm{NCS})_{2} \text { (phen) }\right)_{2}\right]$ (phen $=1,10$-phenanthroline) containing a distorted octahedral $\left[\mathrm{Cu}^{\mathrm{II}} \mathrm{N}_{6}\right]$ core is reported. The structure of $\left.\left[\mathrm{Cu}(\mathrm{NCS})_{2} \text { (phen }\right)_{2}\right]$ consists of discrete molecules in which the six-coordinate Cu atom sits on a twofold rotation axis with the thiocyanates coordinating through the N atom. The $\mathrm{Cu}-\mathrm{N}_{\mathrm{NCS}}$ distances are $2.020(7) \AA$, while the $\mathrm{Cu}-\mathrm{N}_{\text {phen }}$ distances are 2.132 (5) \AA trans to NCS and 2.217 (5) \AA trans to $\mathrm{N}_{\text {phen }}$. The geometry is distorted from octahedral stereochemistry because of the $76.9(2)^{\circ} \mathrm{N}-\mathrm{Cu}-\mathrm{N}$ bite angle of each 1,10-phenanthroline and because of a slight elongation of the trans positions that are occupied by an N atom from each phenanthroline ligand. The thiocyanate ions are linear $\left[\mathrm{N}-\mathrm{C}-\mathrm{S}=178.9(6)^{\circ}\right]$ and are at an angle of $161.0(6)^{\circ}$ to the Cu atom.

Comment

The title compound, (I), is an analog of $\left[\mathrm{Fe}(\mathrm{NCS})_{2^{-}}\right.$ (phen $)_{2}$] and $\left[\mathrm{Mn}(\mathrm{NCS})_{2}(\text { phen })_{2}\right.$]. The iron complex is the archetype of a series of complexes that exhibit a spin-state crossover between the high-spin (${ }^{5} T_{2}$) and low-spin (${ }^{1} A_{1}$) states (Konig \& Madega, 1967; Konig, Madeja \& Watson, 1968; Ganguli, Gütlich \& Müller, 1981). The manganese complex has a distorted octahedral $\left[\mathrm{Mn}^{\mathrm{II}} \mathrm{N}_{6}\right]$ core (Holleman, Parker \& Breneman, 1994). Here, we report the crystal and molecular structure of the copper complex cis- $\left[\mathrm{Cu}(\mathrm{NCS})_{2}(\text { phen })_{2}\right]$, (I).

(I)

The structure of $\left.\left[\mathrm{Cu}(\mathrm{NCSe})_{2} \text { (phen) }\right)_{2}\right]$ shows a similar trans distortion and similar bond distances (Sedov, Dunaj-Jurco, Kabesova, Gazo \& Garat, 1982). In this
compound, the $\mathrm{Cu}-\mathrm{N}_{\mathrm{NCSe}}$ distances were found to be $2.04 \AA$, while the $\mathrm{Cu}-\mathrm{N}_{\text {phen }}$ distances are 2.13 and $2.18 \AA$. The authors report that $\left[\mathrm{Cu}(\mathrm{NCS})_{2}(\text { phen })_{2}\right]$ is isomorphous ($\mathrm{Pbcn}, Z=4$) with $\left[\mathrm{Cu}(\mathrm{NCSe})_{2}(\text { phen })_{2}\right]$. With polycrystalline samples, O'Leary, Tyagi \& Hathaway (1983) reported that $\left[\mathrm{Cu}(\mathrm{NCS})_{2}(\text { phen })_{2}\right]$ is isomorphous with $\left[\mathrm{Zn}(\mathrm{NCS})_{2}(\text { phen })_{2}\right]$, based on X-ray powder photographs. Hathaway also notes that being isomorphous does not mean that the $M \mathrm{~N}_{4} \mathrm{~N}_{2}$ chromophores are isostructural. An ORTEPII (Johnson, 1976) plot of the title complex with the H atoms omitted is shown in Fig. 1, along with the numbering system.

Fig. 1. Displacement ellipsoid (50% probability) plot of $\left[\mathrm{Cu}(\mathrm{NCS})_{2}{ }^{-}\right.$ (phen $)_{2}$] showing the atom-numbering scheme. H atoms have been omitted.

The $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ bite angles of the 1,10-phenanthrolines are $76.9(2)^{\circ}$. The $\mathrm{Cu}-\mathrm{N}_{\text {phen }}$ distances of 2.132 (5) and 2.217 (5) \AA are comparable to those of 2.13 (8) and 2.18 (8) \AA in $c i s-\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{NCSe})_{2}(\text { phen })_{2}\right]$ (Sedov, DunajJurco, Kabesova, Gazo \& Garat, 1982), with both compounds exhibiting a trans elongated distortion. For cis- $\left[\mathrm{Mn}^{\mathrm{II}}(\mathrm{Cl})_{2}(\text { bipy })_{2}\right]$ (Lumme \& Lindell, 1988), the $\mathrm{Mn}-\mathrm{N}_{\text {bipy }}$ distances that are trans to Cl are the longer distances; the same trans distortion is observed in cis$\left[\mathrm{Mn}(\mathrm{NCS})_{2}(\text { bipy })_{2}\right]$ (Veidis, Dockum, Charron, Reiff \& Brennan, 1981). The cis-[$\left.\mathrm{Mn}(\mathrm{NCS})_{2}(\text { phen })_{2}\right]$ complex previously reported by us shows no significant difference in the $\mathrm{Mn}-\mathrm{N}_{\text {phen }}$ distances (Holleman, Parker \& Breneman, 1994).

The $\mathrm{Cu}-\mathrm{N}_{\mathrm{NCS}}$ distance is 2.020 (7) \AA in $\left[\mathrm{Cu}(\mathrm{NCS})_{2}{ }^{-}\right.$ (phen) 2^{2}, $2.005(5) \AA$ in $\left[\mathrm{Cu}(\mathrm{NCS})(\text { phen })_{2}\right]^{+}$(Parker, Manson \& Breneman, 1994) and 1.945 (4) \AA in $\left[\mathrm{Cu}(\mathrm{NCS})_{2}\right.$ (phen)] (Breneman \& Parker, 1993). The
thiocyanate ions are linear $\left[178.9(6)^{\circ}\right]$ and are at an angle of $161.0(6)^{\circ}$ from the Cu atom in $\left[\mathrm{Cu}(\mathrm{NCS})_{2}-\right.$ (phen) ${ }_{2}$].

Experimental

cis- $\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{NCS})_{2}(\text { phen })_{2}\right]$ was prepared by the slow addition of a 25 ml solution of 1,10 -phenanthroline monohydrate $(3.97 \mathrm{~g}$, 20.0 mmol) in ethanol to a 20 ml solution of $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ $(1.71 \mathrm{~g}, 10.0 \mathrm{mmol})$ dissolved in water. To the resulting solution, which contained a pale green precipitate, solid $\mathrm{NH}_{4} \mathrm{SCN}$ $(1.52 \mathrm{~g}, 20.0 \mathrm{mmol})$ was slowly added with continuous stirring. The light-green solid was dissolved in dimethyl sulfoxide and bright green crystals were obtained by evaporation of the solvent.

Crystal data

$\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=540.12$
Orthorhombic
Pbon
$a=13.224$ (2) \AA
$b=10.058$ (1) \AA
$c=17.423(2) \AA$
$V=2317.3(5) \AA^{3}$
$Z=4$
$D_{x}=1.548 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.65, T_{\text {max }}=1.00$
2321 measured reflections 2321 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=11.2-14.9^{\circ}$
$\mu=1.15 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Hexagonal prism
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$
Light green

1293 observed reflections
$[l>3 \sigma(I)]$
$\theta_{\max }=25.0^{\circ}$
$h=0 \rightarrow 15$
$k=0 \rightarrow 11$
$l=0 \rightarrow 19$
1 standard reflection frequency: 167 min intensity decay: 0.04%

Refinement

Refinement on F
$R=0.04$
$w R=0.07$
$S=2.48$
1293 reflections
167 parameters
H atoms riding
$w=1 /\left[\sigma^{2}(F)+0.0004 F^{2}\right]$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.56 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3}$
Extinction correction: none
Atomic scattering factors from Cromer \& Mann (1968) and International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\mathrm{eq}}=$			
x	y	$\sum_{i} \sum_{j} \sum_{i j} \mathbf{a}_{i} \mathbf{a}_{j}$	
0	$0.15974(9)$	$3 / 4$	B_{eq}
0	$0.4722(2)$	$0.9232(1)$	$6.64(2)$
$-0.1402(2)$	$0.2977(5)$	$0.8305(3)$	$5.3(1)$
$-0.0330(4)$	$0.0112(5)$	$0.6627(3)$	$4.05(9)$
$0.0025(4)$	$0.1298(5)$	$0.7240(3)$	$3.9(1)$
$-0.1625(4)$	$0.3699(6)$	$0.8685(4)$	$4.2(1)$

C2	$0.0822(5)$	$-0.0425(7)$	$0.6304(4)$	$5.3(2)$
C3	$0.0781(5)$	$-0.1397(7)$	$0.5743(4)$	$6.0(2)$
C4	$-0.0144(5)$	$-0.1824(7)$	$0.5497(4)$	$5.7(2)$
C5	$-0.1025(5)$	$-0.1268(6)$	$0.5809(3)$	$4.4(1)$
C6	$-0.2015(5)$	$-0.1652(7)$	$0.5593(4)$	$5.3(1)$
C7	$-0.2839(5)$	$-0.1081(7)$	$0.5908(4)$	$5.2(1)$
C8	$-0.2748(4)$	$-0.0071(6)$	$0.6473(3)$	$4.2(1)$
C9	$-0.3574(5)$	$0.0576(7)$	$0.6815(4)$	$5.2(2)$
C10	$-0.3415(5)$	$0.1532(6)$	$0.7351(4)$	$5.2(2)$
C11	$-0.2423(5)$	$0.1849(6)$	$0.7543(4)$	$4.7(1)$
C12	$-0.1779(4)$	$0.0331(6)$	$0.6708(3)$	$3.6(1)$
C13	$-0.0900(4)$	$-0.0290(6)$	$0.6375(3)$	$3.7(1)$

Table 2. Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{N} 1$	2.020 (7)	C4-C5	1.402 (9)
$\mathrm{Cu}-\mathrm{N} 2$	2.132 (5)	C5-C6	1.415 (9)
$\mathrm{Cu}-\mathrm{N} 3$	2.217 (5)	C5-C13	1.403 (8)
$\mathrm{S}-\mathrm{Cl}$	1.625 (8)	C6-C7	1.35 (1)
$\mathrm{N} 1-\mathrm{Cl}$	1.150 (8)	C7-C8	1.419 (9)
N2-C2	1.311 (8)	C8-C9	1.404 (9)
$\mathrm{N} 2-\mathrm{Cl} 3$	1.361 (8)	C8-C12	1.404 (8)
N3-Cll	1.303 (8)	C9-C10	1.357 (9)
N3-C12	1.359 (8)	C10-C11	1.39 (1)
$\mathrm{C} 2-\mathrm{C} 3$	1.38 (1)	C12-C13	1.442 (9)
C3-C4	1.366 (9)		
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} \mathrm{l}^{1}$	93.2 (4)	N2-C2-C3	124.3 (7)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	168.4 (2)	C2-C3-C4	118.6 (7)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2^{\text {i }}$	89.0 (2)	C3-C4-C5	119.8 (7)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 3$	91.5 (2)	C4-C5-C6	123.8 (7)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 3^{1}$	99.3 (2)	C4-C5-C13	117.0 (6)
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 2^{1}$	91.1 (3)	C6-C5-C13	119.2 (6)
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 3$	76.9 (2)	C5-C6-C7	121.6 (7)
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 3^{\text {i }}$	92.0 (2)	C6-C7-C8	121.2 (6)
$\mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 3^{1}$	164.4 (3)	C7-C8-C9	124.1 (6)
$\mathrm{Cu}-\mathrm{N} 1-\mathrm{Cl}$	161.0 (6)	C7-C8-C12	119.0 (6)
$\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 2$	127.4 (5)	C9-C8-C12	116.9 (6)
$\mathrm{Cu}-\mathrm{N} 2-\mathrm{Cl} 3$	115.1 (4)	C8-C9-C10	120.0 (7)
C2-N2-C13	117.5 (5)	C9-C10-C11	118.3 (7)
$\mathrm{Cu}-\mathrm{N} 3-\mathrm{Cl1}$	130.1 (4)	N3-C11-C10	124.7 (6)
$\mathrm{Cu}-\mathrm{N} 3-\mathrm{Cl} 2$	112.5 (4)	N3-C12-C8	122.8 (6)
$\mathrm{Cl1}-\mathrm{N} 3-\mathrm{Cl} 2$	117.3 (5)	$\mathrm{N} 3-\mathrm{Cl} 2-\mathrm{Cl} 3$	117.6 (5)
C8-C12-C13	119.6 (5)	$\mathrm{N} 2-\mathrm{Cl} 3-\mathrm{Cl} 2$	117.8 (5)
$\mathrm{N} 2-\mathrm{Cl} 3-\mathrm{C} 5$	122.8 (6)	C5-Cl3-Cl2	119.4 (6)
$\mathrm{S}-\mathrm{Cl}-\mathrm{Nl}$	178.9 (6)		
Symmetry code: (i) $-x, y, \frac{3}{2}-z$.			

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1990). Program(s) used to refine structure: MolEN. Molecular graphics: SHELXTL/PC, ORTEPII (Johnson, 1976). Software used to prepare material for publication: MolEN.

We gratefully acknowledge financial support for this study by a M. J. Murdock Charitable Trust Award of Research Corporation.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1208). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Breneman, G. L. \& Parker, O. J. (1993). Polyhedron, 12, 891-895. Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.

Ganguli, P., Gütlich, P. \& Müller, E. W. (1981). J. Chem. Soc. Dalton Trans. pp. 441-446.
Holleman, S. R., Parker, O. J. \& Breneman, G. L. (1994). Acta Cryst. C50, 867-869.
Johnson, C. K. (1976). ORTEPII. Report-5138. Oak Ridge National Laboratory, Tennessee, USA.
Konig, E. \& Madeja, K. (1967). Inorg. Chem. 6, 48-55.
Konig, E., Madeja, K. \& Watson, K. J. (1968). J. Am. Chem. Soc. 90, 1146-1153.
Lumme, P. O. \& Lindell, E. (1988). Acta Cryst. C44, 463-465.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
O’Leary, A., Tyagi, S. \& Hathaway, B. J. (1983). Inorg. Chim. Acta Lett. 76, L89-L90.
Parker, O. J., Manson, J. L. \& Breneman, G. L. (1994). Acta Cryst. C50, 1201-1203.
Sedov, A., Dunaj-Jurco, M., Kabesova, M., Gazo, J. \& Garat, J. (1982). Inorg. Chim. Acta Lett. 64, L257-L258.

Sheldrick, G. M. (1990). SHELXTL/PC Users Manual. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
Veidis, M. V., Dockum, B., Charron, F. F., Reiff, W. M. \& Brennan, T. F. (1981). Inorg. Chim. Acta, 53, L197-L199.

Acta Cryst. (1996). C52, 41-43

$\mathrm{Cu}_{3}(\text { bdmap })_{4} \mathrm{Cl}_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$, bdmap $=$ 1,3-Bis(dimethylamino)-2-propanolato. A Clamp-Shaped Molecule

Suning Wang
Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4

(Received 25 May 1995; accepted 12 July 1995)

Abstract

The title structure, bis[μ-1,3-bis(dimethylamino)-2-propanolato]-1 $\kappa N: 2 \kappa N^{\prime}, 1: 2 \kappa^{2} O ; 1 \kappa N: 3 \kappa N^{\prime}, 1: 3 \kappa^{2} O$-bis[1,3-bis(dimethylamino)-2-propanolatol- $2 \kappa N, 2 \kappa O ; 3 \kappa N, 3 \kappa O$ -dichloro- $2 \kappa C l, 3 \kappa C l$-methanol- $1 \kappa O$-tricopper(II), $\left[\mathrm{Cu}_{3}-\right.$ $\mathrm{Cl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\right)_{4}\left(\mathrm{CH}_{4} \mathrm{O}\right)$], contains discrete molecules with C_{2} crystallographic symmetry and a non-linear Cu_{3} arrangement. Each Cu atom is five-coordinate. The central Cu atom is coordinated by a methanol molecule and is bridged by one bdmap ligand [bdmap $=1,3-\operatorname{bis}($ dimethylamino) -2 -propanolato] to each of the outer Cu atoms, which are additionally coordinated by a Cl atom and a chelating bdmap ligand.

Comment

We have been investigating the coordination chemistry of copper(II) with bidentate and tridentate aminoalcohol ligands. Aminoalcohol ligands have been found to be

